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Abstract

The basis of surveillance, event detection, and tracking applications is the detection of moving objects
in complex scenes. Complex scenes are difficult to analyze because of camera noise and lighting condi-
tions. Currently, moving objects are detected primarily using background subtraction. We analyze block
matching as an alternative for detecting moving objects. Block matching has been extensively utilized
in compression algorithms for motion estimation. Besides detection of moving objects, block matching
also provides motion vectors (location of motion) which can aide in tracking objects.

Block matching techniques consist of three main components: block determination, search methods,
and matching criteria. We compare various options for each of the components with moving object de-
tection as the performance goal. Publicly available sequences of several different traffic and weather
conditions are used to evaluate the techniques. A coherence metric and the average magnitude of ob-
ject motion vector error are used to evaluate block determination approaches and search methods. To
compare the matching criteria we use precision-recall curves to evaluate the performance of motion
detection.

We present an empirical study of the block matching techniques using these metrics of performance
as well as process timing. We found the hierarchical block determination approach has an overall
higher coherence of object motion vectors than the simple block determination approach, but with a
significant increase in process timing. The average magnitude of object motion vector for the search
methods evaluated were comparable, with the cross search method having a better coherence of object
motion vectors. Overall the three step search (TSS) detects more moving objects than the cross and
2D-logarithmic search methods. And the mean square difference (MSD) matching criterion has the best
precision-recall as well as process timing when using zero motion biasing.

1 Introduction

Detection of moving objects is difficult due to camera noise, lighting conditions, object orientation and
size. Detection is primarily done by preprocessing the frame to reduce noise and the effect of different
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lighting conditions, followed by background subtraction. Background subtraction is the process of sub-
tracting a frame that models the background from the current frame. The simplest case of background
subtraction is frame differencing, where the background model is the previous frame. After background
subtraction, pixels in the resulting frame produce a foreground mask of moving pixels. These pixels are
then combined to produce moving objects.

Block matching offers an alternative to background subtraction for object detection. In block match-
ing, blocks in the current frame are matched to blocks in a reference frame (an earlier frame). For each
block in the current frame, the reference frame is searched for the best matching block. A matching
criteria determines the best match from candidate blocks in the reference frame. If the matched block
is not in the same location in the reference frame as in the current frame, the block has moved. A fore-
ground mask of the moving blocks is generated. Blocks with the same motion can be combined to form
moving objects. Block matching adds the additional information of block motion, making block match-
ing attractive for tracking applications. Block matching is extensively used in compression [14, 13] to
detect motion. In this report, we present a detailed evaluation of the various implementations of block
matching for use in detecting moving objects.

Block matching techniques can be divided into three components: block determination, searching
method, and matching criteria. For each component, a comparison of several options is performed. We
begin with Section 2 describing the block matching components studied. Section 3 follows with details
on the data sequences evaluated and the results of the metrics used. We end with conclusions drawn
from the empirical study in Section 4.

2 Block Matching Techniques

Block matching techniques match blocks from the current frame with blocks from a reference frame.
The displacement in block location from the current frame to the location in the reference frame is the
motion vector. Block matching techniques can be divided into three main components as shown in
Figure 1: block determination, search method, and matching criteria.

Figure 1: Block Matching Flowchart

The first component, block determination, specifies the position and size of blocks in the current
frame, the start location of the search in the reference frame, and the scale of the blocks. We focus on
fixed size, disjoint blocks spanning the frame, with initial start location at the corresponding location
of the block in the reference frame. In tracking, a predictive method may be used to improve the start
location of the search.
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The search method is the second component, specifying where to look for candidate blocks in the
reference frame. A fully exhaustive search consists of searching every possible candidate block in the
reference frame. This search is computationally expensive and other search methods have been proposed
to reduce the number of candidate blocks and/or reduce the processing for all candidate blocks. In this
report, we concentrate on search methods that reduce the number of candidate blocks.

The third component is the matching criteria. The matching criteria is a similarity metric to determine
the best match among the candidate blocks. In faster search methods, the best match so far will also
determine the direction of the search (choice of next candidate blocks).

The motion vectors are fed to the block determination to implement multiresolution blocks. A coarse
to fine resolution of the blocks is generated. The start location of the search at each resolution is the
location of the best match (motion vector) from the previous coarser resolution.

The implementation of block matching using components allows for flexibility; interchanging com-
ponents produces a large variety of block matching techniques. Based on the application, components
which provide the best results can be chosen with ease.

2.1 Block Determination Approaches

Block matching techniques begin by determining the location, the size, and the scale of blocks, as well
as the start location of the search. We examine both a simple and a hierarchical approach. Variable-size
approaches are also used in compression algorithms [2, 21, 16]. In a variable-size approach the block
sizes are not fixed and vary in size based on a homogeneity metric (test for similarity). The variable-size
approaches are designed primarily to reduce bit-rate by reducing the number of motion vectors which
represent a frame. Since our focus is moving object detection and speed of processing, not compression,
we did not implement a variable-size approach.

2.1.1 Simple Block Determination

In the simple block determination approach, each block is a portion of the frame at a fixed size. All
blocks are disjoint, and there is no change in the scale of a block. A block size which does not encompass
an entire object, but allows for several blocks to form an object is chosen. The search is started at the
same block location in the reference frame.

2.1.2 Hierarchical Block Determination

In this case, a multiresolution approach is used to determine the block location, size, and scale. First, a
Gaussian pyramid of the current and the reference frame is constructed. At each level of the pyramid, the
frame is divided into disjoint fixed size blocks as in the simple block determination approach. The search
begins at the same location of the block in the lowest resolution reference frame; at each subsequent level
the search starts at the best match from the previous level as shown in Figure 2.

2.2 Search Method

The search method determines candidate matching blocks in the reference frame. We examine 4 search
methods; a window search, three step search [8], 2D-logarithmic search [7], and cross search [5]. Each
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Figure 2: The three blocks are the search areas from three different resolutions. Level
0 is the resolution of the original frame, level 1 and level 2 are successively coarser
resolutions. In hierarchical block determination, the × represents the start location
of the search at a particular resolution. The circle is the location of the best match
at a resolution. The dashed arrows represent the corresponding location from one
resolution to the next. The search begins at level 2, the best match at level 2 becomes
the starting location at level 1. This process continues until the best match is found at
level 0.

search method searches the reference frame at a given step size. The step size is the number of pixels
from the center candidate block to the other candidate blocks based on the search pattern.

Although we focus our evaluation on search methods which reduce the number of candidate blocks,
there are also search methods that reduce the processing within a block. There are two common methods,
one uses only a sample of pixels in a block to determine a match [9, 20], the other uses partial sums to
speed up processing of a block [1, 3]. These methods concentrate on reducing processing time with a
slight reduction in performance and can be incorporated into any search method.

2.2.1 Window Search

A window in the reference frame is searched at a given step size. The size of the window is dependent
upon the motion of the objects in the frame. The window size is chosen to be slightly larger than the
maximum possible motion of the objects. This reduces the search area based on the application. A step
size equal to one pixel is a full search of the window, finding the optimal motion vectors. A larger step
size increases the speed by reducing the number of candidate blocks, but increases motion vector error.
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Figure 3: Example of TSS with step size = 4; each number represents the location of
candidate blocks at a given iteration. The circles show the location of the best match
at each iteration. And the vector is the resulting motion vector. The point at (i, j)
indicated by 1 is the location of the block being considered and the location of the
first candidate block in the reference frame (zero-motion candidate block). The eight
points a step size of four away marked with 2 are the location of candidate blocks for
the second iteration. The location of the best match from these candidate blocks is
circled, (i + 4, j). The eight neighbors of (i + 4, j) a step size of two away are the next
set of candidate blocks indicated by 3, with the location of the best match circled at
(i + 6, j + 2). The final iteration has eight neighbors marked with a 4. The resulting
best match location is signified with a circle and motion vector from the location of the
block being considered to the location of the best match.
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2.2.2 Three Step Search - TSS

The three step search begins with eight candidate neighbor blocks a given step size away. The search is
a recursive process with each iteration centered at the best match from the previous iteration and the step
size halved, until a step size of one is reached. The three step search reduces the number of candidate
blocks and covers a large area, making it a fast search technique. The three step search covers an area of
(2(s+1) − 1)2 with 8(log2 s+1)+1 candidate blocks. The approach concentrates on directing the search
based on the best match from the previous step. With this scheme, however, there is the potential to be
trapped in a local minima. An example of the search is given in Figure 3 with circles representing the
best match at each iteration. A description of the three step search follows:

Step 1: Set the motion vector of block (i, j) in the current frame, to zero-motion, ~m(i, j) = (0, 0)
and set the best match value, vb, to the dissimilarity value of the block (i, j) in the current frame
and the block (i, j) in the reference frame, vb = M(0, 0). If vb is less than the zero-motion bias
threshold (defined in Section 2.4), the search stops. Otherwise go to Step 2.

Step 2: The best match is the minimum of vb (the current best match value) and the dissimilarity
values of the eight neighboring blocks a step size, s, away centered at (i, j)+ ~m(i, j) (current best
match location) in the reference frame. vb is set to the best match value and ~m(i, j) is set to the
corresponding motion vector.

Step 3: If s > 1, then halve the step size (set s = ds/2e) and go to Step 2. Otherwise return ~m(i, j).

2.2.3 Cross Search

The cross search is similar to TSS, except the candidate blocks are limited to four neighbors (cross
pattern, ×) in each iteration rather than eight as in the case of TSS. The search is faster than TSS due
to the further reduction of candidate blocks. The results are even more likely to be a local minima. The
steps of the cross search are:

Step 1: Set the motion vector of block (i, j) in the current frame, to zero-motion, ~m(i, j) = (0, 0)
and set the best match value, vb, to the dissimilarity value of the block (i, j) in the current frame
and the block (i, j) in the reference frame, vb = M(0, 0). If vb is less than the zero-motion bias
threshold (defined in Section 2.4), the search stops. Otherwise go to Step 2.

Step 2: The best match is the minimum of vb (the current best match value) and the dissimilarity values
of the four neighboring blocks in a cross (×) pattern a step size, s, away centered at (i, j)+ ~m(i, j)
(current best match location) in the reference frame. vb is set to the best match value and ~m(i, j)
is set to the corresponding motion vector.

Step 3: Halve the step size (set s = ds/2e). If s > 1, then go to Step 2. Otherwise go to Step 4.

Step 4: If the best match is at the upper right or lower left corner, go to step 5. Otherwise go to Step 6.

Step 5: Find the best match among vb (the current best match value) and the dissimilarity values of
the four neighboring blocks in a plus (+) pattern a step size, s, away centered at (i, j) + ~m(i, j)
(current best match location) in the reference frame. vb is set to the best match value and ~m(i, j)
is set to the corresponding motion vector.
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Figure 4: Example of cross search with step size = 4; each number represents the
location of candidate blocks at a given iteration. The circles show the location of the
best match at each iteration. And the vector is the resulting motion vector. The point
at (i, j) indicated by 1 is the location of the block being considered and the location
of the first candidate block in the reference frame (zero-motion candidate block). The
four points a step size of four away marked with 2 are the location of candidate blocks
for the second iteration. The location of the best match from these candidate blocks is
circled, (i + 4, j + 4). The four neighbors of (i + 4, j + 4) a step size of two away are the
next set of candidate blocks indicated by 3, with the location of the best match circled
at (i+6, j +2). The 4th iteration has four neighbors marked with a 4. Followed by a final
iteration, the resulting best match location is signified with a circle and motion vector
from the location of the block being considered to the location of the best match. At the
4th iteration, the squares are an alternative best match leading to the 5’ search pattern
(+).
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Step 6: The best match is the minimum of vb (the current best match value) and the dissimilarity values
of the four neighboring blocks in a cross (×) pattern a step size, s, away centered at (i, j)+ ~m(i, j)
(current best match location) in the reference frame. vb is set to the best match value and ~m(i, j)
is set to the corresponding motion vector.

The last step in the search is a cross (×) or plus (+) pattern depending on the location of the best
match so far. Figure 4 shows an example of the two cases, after the 4th iteration the circle corresponds to
a best match which leads to a cross (×) pattern search and the square leads to a plus (+) pattern search.

2.2.4 2D-Logarithmic Search

The 2D-logarithmic search is similar to the cross search, except for the search pattern and when the step
size is reduced. The search may be faster than TSS due to the possible reduction of candidate blocks.
This search method can become trapped in a local minima as well. The steps for the 2D-logarithmic
search follow:

Step 1: Set the motion vector of block (i, j) in the current frame, to zero-motion, ~m(i, j) = (0, 0)
and set the best match value, vb, to the dissimilarity value of the block (i, j) in the current frame
and the block (i, j) in the reference frame, vb = M(0, 0). If vb is less than the zero-motion bias
threshold (defined in Section 2.4), the search stops. Otherwise go to Step 2.

Step 2: The best match is the minimum of vb (the current best match value) and the dissimilarity values
of the four neighboring blocks in a plus (+) pattern a step size, s, away centered at (i, j) + ~m(i, j)
(current best match location) in the reference frame. If the center is not the best match, go to Step
3. Otherwise go to Step 4.

Step 3: vb is set to the best match value and ~m(i, j) is set to the corresponding motion vector, go to
Step 2.

Step 4: If s > 1, then halve the step size (set s = ds/2e) go to Step 2. Otherwise go to Step 5.

Step 5: Find the best match of the among vb (the current best match value) and the dissimilarity values
of the eight neighboring blocks centered at (i, j) + ~m(i, j) (current best match location) in the
reference frame. vb is set to the best match value and ~m(i, j) is set to the corresponding motion
vector.

Figure 5 shows an example of the 2D-logarithmic search. The step size is only reduced when the center
candidate block of the previous iteration is the best match. With the last eight neighboring blocks and the
potential for additional iterations, the 2D-logarithmic search is slower than the cross search but covers
more area if not restricted. In order to limit the search area the 2D-logarithmic search can be restricted
to a search window reducing the number of possible candidate blocks.

The three step, 2D-logarithmic, and the cross search are designed for speed to reduce the number
of candidate blocks. However, unlike the window search, there is a potential to be trapped in a local
minima in these searches. The window search with a step size of one is a full search trying all possible
candidate blocks.
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Figure 5: Example of 2D-logarithmic search with step size = 4; each number represents
the location of candidate blocks at a given iteration. The circles show the location of the
best match at each iteration. And the vector is the resulting motion vector. The point
at (i, j) indicated by 1 is the location of the block being considered and the location
of the first candidate block in the reference frame (zero-motion candidate block). The
four points a step size of four away marked with 2 are the location of candidate blocks
for the second iteration. The location of the best match from these candidate blocks is
circled, (i + 4, j). Since the location of the best match is not at the center of the current
iteration, the step size is not reduced. The four neighbors of (i + 4, j) a step size of
four away are the next set of candidate blocks indicated by 3, (there are only three due
to the search area limit). The location of the best match has not changed and is now
the center of the candidate blocks, therefore the step size is reduced by a factor of 2.
The 4th iteration has four neighbors marked with a 4. The location of the best match is
again (i + 4, j). The final iteration consists of the eight neighboring points marked with
5. The resulting best match location is signified with a circle and motion vector from
the location of the block being considered to the location of the best match.
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2.3 Matching Criterion

Given an n × n block, a matching criteria, M(p, q), measures the dissimilarity of a block in the current
frame, Ic, and a block in the reference frame, Ir, shifted by (p, q). These criteria can be characterized
by M(p, q) =

∑n
i=1

∑
j=1 φ(e), where e = Ic(i, j) − Ir(i + p, j + q) and φ(e) is the criteria function.

Figure 6 shows the criteria functions for a given e. We examine four matching criteria which are also
known as error or matching functions.

SAD The sum of the absolute values of the differences in the two blocks:

M(p, q) =
n∑

i=1

n∑

j=1

|Ic(i, j) − Ir(i + p, j + q)|

MAD The mean of the absolute values of the differences in the two blocks:

M(p, q) =
1

n2

n∑

i=1

n∑

j=1

|Ic(i, j) − Ir(i + p, j + q)|

MSD The mean of the square of the differences in the two blocks:

M(p, q) =
1

n2

n∑

i=1

n∑

j=1

(Ic(i, j) − Ir(i + p, j + q))2

MPC The sum of the non-matching pixels in the two blocks, a match is determined by the absolute
value of the difference being less than a threshold, tMPC .

M(p, q) =
n∑

i=1

n∑

j=1

D(Ic(i, j), Ir(i + p, j + q))

D(a, b) = 0 if |a − b| ≤ tMPC

1 otherwise

SAD and MAD only differ by a constant in the case of fixed size blocks and can be used interchange-
ably in our comparison. Practically, SAD is faster due to the removal of the divide operation. While
MAD incorporates large differences, MSD penalizes more a block with one or more large differences.
MPC on the other hand equally weights any difference above a threshold.
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Figure 6: The matching criteria as functions of the difference of pixels, M(p, q) =∑n
i=1

∑
j=1 φ(e). The plots are the various criteria functions φ(e) for an individual er-

ror, e. Plot (a) is for an error ranging from 0 to 15 pixels and plot (b) is for an error
ranging from 10 to 50 pixels. Note that the y-axis in plot(b) is in the log scale.
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(a) Original (b) Ground truth frame (c) No biasing (d) Zero-motion biasing

Figure 7: Example of reduced noise and false motion using zero-motion biasing. The
original frame is shown in (a). The manually highlighted ground truth of the original
frame is in (b). The frame in (c) contains highlighted motion blocks from block matching
using the simple block determination approach with 8×8 block size, the window search
method with a step size of one and 15×15 window size, and SAD matching criteria. The
frame in (d) is the same block matching technique with zero-motion biasing, the zero-
motion bias threshold is 250.0.

2.4 Zero-Motion Bias

To reduce the effect of noise, we incorporate zero-motion biasing into all block matching techniques.
All searches begin with a check for zero-motion, that is, the current block is compared with the block
at the same location in the reference frame. If zero-motion is a “good” match (within a threshold), the
search is terminated, resulting in a motion vector with no motion, ~m(i, j) = (0, 0) . Otherwise one of the
search methods is used. As shown in Figure 7, zero-motion biasing reduces false motion; it also reduces
the processing time by eliminating searches.

The zero-motion bias threshold is dependent upon the matching criteria, overall motion in the frame
and block size. From Figure 6, a given threshold permits different amounts of error per matching cri-
teria. Camera motion requires a higher zero-motion bias threshold to remove blocks with background
motion. Matching criteria which sum differences between the blocks are directly related to the size of
the block. In the case of mean-based matching criteria (e.g. MAD and MSD), a large block size will be
sensitive to the overall motion of the frame and may set the motion to zero for a block with the desired
motion. In contrast, sum-based matching criteria like SAD for a given block size are more sensitive to
large differences of a few pixels. In our work, the choice of zero-motion bias threshold is determined
empirically based on the application.

3 Experiments

Our focus is on the comparison of block matching techniques for moving object detection. The ex-
periments consist of four image sequences of traffic. We examine the detection of moving objects and
processing speeds for a variety of block matching components.
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3.1 Data

The traffic sequences tested are publicly available from a website maintained by KOGS/IAKS Universi-
taet Karlsruhe.1 In Figure 8, the first column is sample frames from the four traffic sequences used. The
sequences are of varying traffic and weather conditions:

• Bright (1500 frames): Bright daylight with “stop-and-go” traffic

• Fog (300 frames): Heavy fog with traffic patterns similar to the Bright sequence.

• Snow (300 frames): Snow with low to moderate traffic.

• Busy (300 frames): Busy intersection with vehicles and pedestrians and a large shadow from a
building.

Bright, Fog, and Snow are sequences of the same intersection. The Fog and Snow sequences are con-
verted from color to luminance only.

3.1.1 Ground Truth

Ground truth measurements are accurate results used for comparison with block matching results to
evaluate the different techniques. We used both ground truth masks and object motion vectors as ground
truth measurements for our experiments.

Masks The ground truth masks are manually highlighted moving pixels (including shadows). The
frames used to generate the ground truth masks are selected from the latter part of each sequence at
regular intervals. Ten ground truth masks from each test sequence are created. Connected components
in the ground truth masks are considered an object. There are a total of 81 objects in the ground truth
masks of the Bright sequence, 73 objects in the Fog sequence, 83 objects in the Snow sequence, and 251
objects in the Busy sequence.

In order to accurately compare the block matching techniques, we use a “blocky” version of the
ground truth. The frame is divided into the block sizes tested; if a block contains highlighted pixels from
the ground truth mask the entire block is highlighted. Samples of frames with “blocky” versions of the
ground truth masks are shown in Figure 8.

Object Motion Vectors Object motion vectors are obtained by manually finding the best match for an
object (connected components). This process is extremely time consuming and therefore is only done
for one frame per sequence. Object motion vectors are found from the first ground truth mask in each
sequence. There are a total of 13 objects in the first ground truth mask of the Bright sequence, 11 objects
in the Fog sequence, 11 objects in the Snow sequence, and 40 objects in the Busy sequence.

3.2 Results

We begin with a comparison of the matching criteria, followed by the search methods, and the block
determination approaches.

1All sequences are copyrighted by H.-H. Nagel of KOGS/IAKS Universitaet Karlsruhe. http://i21www.ira.uka.
de/image_sequences
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Figure 8: Sample frames (first column), manually highlighted ground truth frames (sec-
ond column), and “blocky” (8×8 blocks) ground truth frames (third column) from each
sequence. Each row is a sequence: row 1: Bright, row 2: Fog, row 3: Snow, and row 4:
Busy.
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3.2.1 Matching Criteria

In order to compare the matching criteria, matching blocks were determined using the simple block
determination approach with 8×8 blocks, and a window search with step size of 1 and a 15×15 window.
This is the equivalent of a full search with zero-motion biasing. As a measure of performance, precision-
recall curves were generated for each of the matching criteria by varying the zero-motion bias threshold.
As MPC also has a threshold to determine pixel matches, we examine three values of the MPC threshold:
3, 5, and 10.

The precision, P , is a measure of the accuracy of the detection,

P =
# of moving pixels correctly detected

# of moving pixels detected

and the recall, R, is a measure of moving objects detected,

R =
# of moving pixels correctly detected
# of moving pixels in the ground truth

.

Ideally, a precision and recall of one is the goal. Most often, an increase in recall leads to a decrease in
precision, as more moving pixels are being detected along with a greater number of non-moving object
pixels.

Figure 9 shows the results for each sequence. As the zero-motion bias threshold increases (right-to-
left in Figure 9), the noise is reduced (increasing precision) until eventually (at the knee of the curve),
moving object pixels are removed (decreasing recall). MSD gives the best overall results. MPC with
tMPC = 10 closely follows for each sequence. Recall is reduced by about 10% in the sequences when
using SAD (or MAD) instead of MSD.

The average precision-recall curves over all four sequences with the corresponding average process
timing is shown in Figure 10. The average precision-recall curves are generated by averaging the results
of all sequence for a given matching criterion and threshold. The MSD and MPC (tMPC = 10) matching
criteria have comparable results. The other matching criteria have a visible reduction in precision and
recall at the knee of the curves. The corresponding process timing shows that MSD is faster than MPC
with tMPC = 10.
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Figure 9: Precision-recall curves of matching criteria with varying zero-motion bias
threshold for the four video sequences.
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Figure 10: The top plot is the average precision-recall curves of the four sequences
for matching criteria with varying zero-motion bias threshold. The bottom plot is the
corresponding average process timing over the frames and sequences for a given zero-
motion bias threshold.
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3.2.2 Search Method

Evaluation Metrics To compare search methods and block determination approaches, we use two
metrics. These two metrics require the identification of an object, which is defined as a connected
component in the ground truth frames. The first metric is a coherence metric, which measures the
deviation of block motion within an object. The second metric is the average magnitude of the object
motion vector error. As previously stated, this is obtained by first determining an object’s motion vector.
Each connected component (object) in the ground truth frame is manually moved to find the best match
in the subsequent frame; this motion is the object motion vector. Every pixel within the object is given
the object motion vector and the error is the absolute difference between the object’s motion vector and
the motion vector of a pixel from block matching. We have manually determined a motion vector for the
objects in one frame per sequence.

Comparison The search methods are compared using the simple block determination approach with
8×8 blocks, and the MSD matching criterion. The TSS, 2D-logarithmic, and cross search methods begin
with a step size of 4 and the window search has a step size of 1. The sequences have a maximum observed
motion vector of 5.7 pixels. The motion vector coherence within an object is seen in Figures 11, 13, 17,
19. Each error ellipse is formed from the covariance matrix of an object [12]. A tight ellipse indicates
that the motion vectors within an object are coherent.

Although Figures 11, 13, 17, 19 gives insight into the coherence of an object, there are co-occurring
ellipses, hiding the overall performance of a search method. To address this, Figures 12, 14, 18, 20
show the percentage of objects detected with error ellipses that fit in a circle of radius ρ (an object
motion vector error with standard deviation ≤ ρ). The higher the percentage, the better the method, with
100% indicating all objects detected.

Coherence Metric

Bright: In Figure 11, the cross method has the tighter error ellipses, signifying more coherence of the
object motion vectors than the other search methods. But from Figure 12, we see the cross search
has fewer objects detected overall and fewer objects with standard deviations within 3 pixels than
the TSS and the window search.

Fog: In Figure 13, the cross method appears to have the tighter error ellipses, and the 2D-logarithmic
search has elongated ellipses showing the tendency of the error in a particular direction. From
Figure 14, the 2D-logarithmic search has a higher percentage of objects detected within a given
error range. Figures 15 and 16 are results from a frame in the Fog sequence. We see in the 2D-
logarithmic search a bias in the vertical direction. A comparison of the vehicle at the bottom also
shows the coherence of the 2D-logarithmic search compared to the other search methods.
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Figure 11: The plots show error ellipses of motion vectors within an object for the
Brignt sequence using the simple block determination approach with 8×8 blocks, and
the MSD matching criterion. The cross, TSS, and 2D-logarithmic searches have a step
size of 4 and the window search has a step size of 1.
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Figure 12: Bright sequence: percentage of objects that fit in an error circle of radius
ρ for each search method using the simple block determination approach with 8×8
blocks, and the MSD matching criterion. The cross, TSS, and 2D-logarithmic searches
have a step size of 4 and the window search has a step size of 1.
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Figure 13: The plots show error ellipses of motion vectors within an object for the Fog
sequence using the simple block determination approach with 8×8 blocks, and the
MSD matching criterion. The cross, TSS, and 2D-logarithmic searches have a step size
of 4 and the window search has a step size of 1.
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Figure 14: Fog sequence: percentage of objects that fit in an error circle of radius ρ for
each search method using the simple block determination approach with 8×8 blocks,
and the MSD matching criterion. The cross, TSS, and 2D-logarithmic searches have a
step size of 4 and the window search has a step size of 1.
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Figure 15: An example frame of detected motion vector blocks from the Fog sequence
using the cross search (top) and TSS search (bottom) methods, the simple block determi-
nation approach with 8×8 blocks, the MSD matching criterion, and step size of 4.
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Figure 16: An example frame of detected motion vector blocks from the Fog sequence
using the 2D-logarithmic search (top) and window search (bottom) methods, the simple
block determination approach with 8×8 blocks, the MSD matching criterion. The 2D-
logarithmic search method with step size of 4 and the window search method with step
size of 1.
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Snow: In Figure 17, there is no significant difference between the search methods. Figure 18 confirms
this observation.

Busy: In Figure 19, the cross method has the tightest error ellipsis, but the window search seems to have
a denser core. In Figure 20, the window search and TSS have no difference, but there is a clear
distinction from the 2D-logarithmic search and the cross search.

Magnitude Metric The average magnitude of the object motion vector error, | ~̂E|, is used to evaluate

the search methods and block determination approaches. Table 1 shows | ~̂E| in pixels for each search
method using the simple block determination approach with 8×8 blocks, and the MSD matching crite-
rion. The cross, TSS, and 2D-logarithmic searches have a step size of 4 and the window search has a step
size of 1. The average magnitude of the object motion vector error is within 0.3 pixels for all sequences,
showing no significant difference in performance. The process timing of the search methods seen in
Table 2 are also comparable for the three fast searches with the window search having a significantly
higher process timing as expected.

| ~̂E| Cross TSS Log WIN
Bright 2.6 2.5 2.3 2.5

Fog 2.1 2.1 1.9 2.2
Snow 1.8 1.7 1.9 1.8
Busy 1.5 1.6 1.7 1.7

Table 1: Average magnitude of object motion vector error using the simple approach
with 8×8 blocks, the MSD matching criterion. Cross, TSS, and Log search methods
have a step size of 4 and WIN has a step size of 1.

Timing (ms) Cross TSS Log WIN
Bright 28 19 24 31

Fog 24 27 22 30
Snow 27 30 27 43
Busy 25 25 25 78

Table 2: Process timing of the simple block determination approach with 8×8 blocks,
the MSD matching criterion. Cross, TSS, and Log search methods have a step size of
4 and WIN has a step size of 1.

3.2.3 Block Determination

We compare two block determination approaches: a simple approach and a hierarchical approach. These
block determination approaches are evaluated using the coherence metric and average magnitude of
object motion vector error. Figure 21 shows the hierarchical approach clearly has tighter error ellipsis in
the Fog and Snow sequences. In Figure 22, we see that the hierarchical approach has a larger or equal
percentage of objects overall pixel ranges. Figures 23-24 show an example frame from the Fog and
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Figure 17: The plots show error ellipses of motion vectors within an object for the Snow
sequence using the simple block determination approach with 8×8 blocks, and the MSD
matching criterion. The cross, TSS, and 2D-logarithmic searches have a step size of 4
and the window search has a step size of 1.
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Figure 18: Snow sequence: percentage of objects that fit in an error circle of radius
ρ for each search method using the simple block determination approach with 8×8
blocks, and the MSD matching criterion. The cross, TSS, and 2D-logarithmic searches
have a step size of 4 and the window search has a step size of 1.
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Figure 19: The plots show error ellipses of motion vectors within an object for the Busy
sequence using the simple block determination approach with 8×8 blocks, and the MSD
matching criterion. The cross, TSS, and 2D-logarithmic searches have a step size of 4
and the window search has a step size of 1.
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Figure 20: Busy sequence: percentage of objects that fit in an error circle of radius ρ for
each search method using the simple block determination approach with 8×8 blocks,
and the MSD matching criterion. The cross, TSS, and 2D-logarithmic searches have a
step size of 4 and the window search has a step size of 1.
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Snow sequences using the two block determination methods. The hierarchical approach is seen as more
coherent than the simple approach.

The hierarchical approach has a slightly lower average magnitude of object motion vector error than
the simple block determination approach as seen in Table 3, but the processing time of the hierarchical
approach is significantly higher seen in Table 4. From this study it is clear the improvement of coherent
object motion vectors in the hierarchical approach is at the high cost of process timing.

| ~̂E| SIM HIER
Bright 2.5 2.5

Fog 2.1 1.5
Snow 1.8 1.6
Busy 1.6 1.6

Table 3: Average magnitude of object motion vector error using the simple block deter-
mination and hierarchical approach with 8×8 blocks, the TSS search method, the MSD
matching criterion, and step size of 4.

Timing SIM HIER
Bright 24ms 766ms

Fog 22ms 1.142s
Snow 8ms 1.138s
Busy 21ms 625ms

Table 4: Process timing of block matching techniques using 8×8 blocks, the TSS
search method, the MSD matching criterion, and step size of 4.

4 Conclusions

We have presented an empirical study of a variety of options for block matching techniques with a
focus on moving object detection. In videos illustrating several different traffic and weather condi-
tions, the MSD matching criteria outperforms the other matching criteria for both moving object detec-
tion (precision-recall) and process speed using zero-motion biasing. For search methods, the methods
are comparable (in coherence and average magnitude of object motion vector error metrics) with the
2D-logarithmic search performing the best in the fog sequence. And the simple block determination
approach though not as coherent as the hierarchical approach in the Fog and Snow sequences, has com-
parable results in the average magnitude of object motion vector error and 1-2 orders of magnitude
improvement in processing speed.
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Figure 21: Each row is from a different sequence, row 1: Bright, row 2: Fog, row 3:
Snow, and row 4: Busy. The plots show error ellipses of motion vectors within an
object, column 1 uses the simple block determination approach and column 2 uses the
hierarchical block determination approach, all plots use 8×8 blocks, the TSS search
method, the MSD matching criterion, and step size of 4.
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Figure 22: Percentage of objects that fit in an error circle of radius ρ for simple and
hierarchical block determination approaches with 8×8 blocks, the TSS search method,
the MSD matching criterion, and step size of 4.
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Figure 23: An example frame of detected motion vector blocks from the Fog sequence
using the simple block determination (top) and hierarchical block determination (bottom)
approaches with the TSS search method, 8×8 blocks, the MSD matching criterion, and
step size of 4.
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Figure 24: An example frame of detected motion vector blocks from the Snow sequence
using the simple block determination (top) and hierarchical block determination (bottom)
approaches with the TSS search method, 8×8 blocks, the MSD matching criterion, and
step size of 4.
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